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0.1     Objectives 

Specific objectives of the research at United Technologies Research Center (UTRC) are as follows: 
(1) Develop methods and tools for uncertainty management in non-linear non-equilibrium models of 
wave phenomena in the jet engines. 
(2) Develop methods and tools for parameter identification and model validation techniques for non- 
linear non-equilibrium models of wave phenomena in the jet engines. 
(3) Develop methods and tools for Design of Beneficial Wave Dynamics for jet engine life and oper- 
abilitv enhancement. 

0.2    Summary of Accomplishments 

The accomplishments of this research program emphasized the more promising directions of points 
(2) and (3) listed above, where the uncertainty management called out in point (1) was implicitly ac- 
commodated in the analysis. A particular emphasis of this research was the identification of nonlinear 
models based on high-speed video of flame dynamics. This is a key component of the thermo-acoustic 
feedback model studied extensively in previous AFOSR-sponsored research programs at UTRC. These 
results are presented in section 1.1. 

These concepts were extended to nonlinear model reduction based on tangent space approxima- 
tions. Here local gramians are empirically computed based on perturbation trajectories. Key com- 
ponents of this research were the development and application of algorithms for approximating the 
nonlinear manifold for which a data set belongs, and identification of the nonlinear dynamics on the 
particular manifold. This lead to the concept of a hybrid (switching) locally affine dynamic texture 
model, based on the local tangent space approximation of the manifold. These results are presented 
in section 1.2. 
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Stability Analysis of Systems with Symmetry-Breaking is presented in section 1.3. Here, sufficient 
conditions are established for a nonlinear PDE model of thermo-acoustics with wave-speed mistuning. 
In investigating a new approach to stability analysis of the nonlinear thermo-acoustic model we de- 
veloped the concept of continued fraction convergence as a condition for stability. Initial results are 
presented for a string of oscillators and the concepts are extended to the application of subsystems 
connected in a ring structure. 

The results of the current research are summarized in 7 journal papers (1 published, 1 accepted, 5 
in preparation), 9 conference papers, and another 2 conference papers currently in preparation. 
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Chapter 1 

Summary of research results 

1.1    Empirical Modeling 

In this section we discuss results on empirical modeling. The first set of results relate the standard lin- 
ear dynamic texture modeling framework to the recently introduced concept of dynamic mode decom- 
position. These results are built on principal component analysis of the data set. The next two results 
focus on the identification of nonlinear systems and the analysis of metastability with the analysis of 
the Markov operator governing the transport of distributions on the phase space. 

1.1.1     Dynamic Mode Decomposition 

Through the singular value decomposition, we show that the eigenmodes computed from dynamic 
mode decomposition are the same as those computed from a linear dynamic texture model computed 
from principal component modes. Comparison results are presented based on 

Dynamic Mode Decomposition (DMD) is a method that allows the extraction of dynamically 
relevant flow features from data [66, 69, 68]. The relation of DMD to eigenmodes of the Koopman 
operator appear in [63]. 

Consider an ordered sequence of (vectorized) data snapshots Xk € RA/ where Ä: = 1,...,AT For 
integers j, k where j < k, let X* = [XJ, ..., x^] so 

X :=Xf = [xi,...,xN] := [*?*,•••,*&]    • (1.1) 

The row vectors z\ e RN can be considered as records of scalar time-series data at a single spatial 
location indexed by I. In particular 

xf-] = 
zilliN-1) 

X» = 
zM(l:N-l) 

Suppose that there is a linear model A such that 

zi(2:N) 

L *M& ■ N) 

XP-AX?-1. (1.2) 



Suppose also that we can write 

where S is the companion matrix 

N-li X? =X»~lS 

5 = 
IN-2 

-C + D 

rJV-1 where s is the least squares approximation of x^ = Xx     s, so 

i-i 

s=[x?-lTxf->]"" if"*» 

and 

Write the eigen-decomposition of 5 as 

Q       1 

/JV-2   0 
D:= °Q     s-ei  ] ,   ef = [1,0,...,0]. 

SW = WQ, 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

where the columns of W are the eigenvectors and Q is a diagonal matrix consisting of the eigenvalues. 

which implies that X^~XW approximate some of the eigenvectors and Q approximates some of the 
eigenvalues of A. We refer to these eigenvectors as DMD modes, denoted by $. with 

* = x»~lw. (1.9) 

Note that the DMD modes are composed of the normalized columns of W scaled by the data X^-. 
Therefore, each column of $ will be scaled according to the data. This is analogous to taking the 
Fourier transform of a time-series record, where associated with each frequency is a magnitude re- 
sponse. This is discussed further in the next section. Therefore, associated with each DMD eigenvalue 
will be a magnitude given by the norm of associated column of 3>. 

Principal Component Analysis 

Principal component analysis (PCA) is also known as proper orthogonal decomposition (POD) [35], 
Karhunen-Loeve Decomposition [72], and singular value decomposition (SVD) [36]. The SVD of a 
matrix X^"1 is 

X^-i=UH\ (1.10) 

where U and V are unitary, UTU = I and VTV = /. A popular method of computing POD is the 
mot hod of snapshots. First form the correlation matrix 

K = Xf-lTXf-1 = VXUTUXVT = VKVT, (1.11) 



where A := E2. Through the svd relation, the POD modes U are computed from V as follows: 

i/ = Xf-1KA"2, (1.12) 

which is identical to (1.10), however K is of smaller dimension than Xj -1 and therefore computing 
V, A through (1.11) is sometimes easier than computing (1.10) directly. 

Combining (1.5) with (1.10) results in 

s = 

= Vh-lVTVY,UTxN 

= VY,-lUTxN. (1.13) 

From (1.12), 

xN = X*~ls = X?-lVY,-lUTxN = UY,VTVYt-
lUTxN = UUTxN, (1.14) 

wliich implies that the least squares approximation of XJSJ is precisely the projection of XN on to the 
modes U. 

Conditioning 

The algorithm for computing the eigenvalues of S given by (1.4) is ill-conditioned. Here we discuss the 
use of SVD as described in [67] to result in a more robust algorithm. We essentially apply equations 
(1.7, 1.8, 1.10) and apply a similarity transform on S so that 

S:=Y,VTSVT,-1. (1.15) 

We first combine (1.8, 1.10) to get 

AUY,VTW = UYVTSW = UXVTWn. (1.16) 

Pre-multiplying (1.16) by UT and applying (1.15) results in 

UTAUEVTW m Y,VTSW = Y,VTWÜ (1.17) 

= T,V
T

SVT.-
1
Y:V

T
W = xvTwn 

= SY = Y'Q, (1.18) 

where Y := Y,VTW is the matrix whose columns are the eigenvectors of S. Referring back to the 
discussion in [67], note that according to (1.17. 1.18), UTAU = 5. and the DMD modes are 

$ = UY = UZVTW. (1.19) 
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It remains to be shown how to compute S directly from the data. Define S? l = l/rX^ l = 
J2VT = [Öi, —, Öiv-i] and similarly define @* = [0y,..., 0*] . First, swap the left and right sides of 
(1.3) and pre-multiply by UT and post-multiply by VE"1 to result in. after applying (1.10), 

§ = SV^SVXT1 = UTX$VZ-1 (1.20) 

= uT[uxv»~lT,xN]vx-1 

= 02
N0f-lTA-1. (1.21) 

The above equations involve computing the SVD of the data X and projecting the data onto the PCA 
modes U. 

Truncation 

The scaling by A-1 in (1.21) motivates truncating the model because A often features singular values 
with very low magnitude and the high-indexed entries of 0^_1. In other words, the projection of the 
data on to the higher order PCA modes results in time-series data with very small absolute value, 
which is the case when the number of snapshots N is smaller than the spatial dimension of the data 

e. N < M. Suppose that instead of computing the DMD on the snapshot data, we first project 
the low-dimensional space spanned by a truncated set of PCA modes Ur- Equations (1.2.1.3) 

become 
©^ = Uj*% = UjAX»-1 = UjAUr®» -1 := Are» "*. (1.22) 

©^ = C/r
TX^ = UfX^^S = 0? "15, (1.23) 

which results in 

Rearranging (1.24) yields 

In particular, by (1.13) 

Are? -1 = 0f_15. (1.24) 

Ar = ©f^SVE"1 = ZVTSVZ-1 m S. (1.25) 

V£ -l 

s=[e?-\e?-ls]vz-1 

= [e%-\zvTvx-luTxN] 

= e?G?lTA\ (1.26) 

which resembles (1.21). Furthermore, by (1.14), 

$N = UjxN = Ur
rUEVTs m ©f"1* = &»-lVYTlUTxN = ©f^VTT1^. (1.27) 



Dynamic Texture Model with PCA 

Dynamic texture models are essentially linear dynamic models describing the dynamics of PCA coef- 
ficients under the assumption that the driving noise is second order Gaussian (see the work of Soatto 
et al. [23]). Suppose the data snapshots {xk}k=i,...,N are the output, of a linear dynamical system 

9k+l = A0k + Bvkl (1.28) 
xk = *9k + wk, (1.29) 

where \& = [^i #/<■] £ anx/c chosen to minimize the objective 

min^ellXf-1 - ^©f"1^. (1.30) 

Note that in [23] the minimization is based on all N data snapshots and here we leave out the last 
snapshot. Under the assumption of stationarity, the optimal solutions will be similar in both cases. 
The minimizing solution of (1.30) is obtained through the SVD of X^_1 = UT.VT by taking 

# = u, ef**1 = zvT. (i.3i) 
The linear dynamic texture model is found by minimizing the objective 

minA\\eZ - Ae"-1^. (1.32) 

Note that 
0^ = [e^-1,^] - [e?-lD2M

TxN] = ©f-1 [D2, VET
1
U

T
XN\ , (1.33) 

where 

D2J    ° 
IN-2 

Prom (1-13) we have VY,~lUTxx = s, and combining this with (1.33,1.51) gives 

(1.34) 

e^ = ef -15 (1.35) 

The optimal solution of (1.32) is given in closed form by 

A = ®N0»-lT [ef-1©?"17] _1 (1.36) 

= 0f-15VE[EVrTVrE]"1 

= efr-1svrr\ (1.37) 

which is the same as (1.25) showing that the dynamic texture model is the same as the linear model 
used in DMD. By application of the SVD (1.10), another way of writing (1.36) is simply 

A = ®N®?-lT [ZVTVX] ~l (1.38) 

= BNG?-lTA-1 =S. (1.39) 



Following [23], the sample input noise covaxiance Q is estimated by 

i=l 

where Vi = 9i+\ - A9{. The driving noise input matrix B is estimated such that 

BBT = Q. (1.41) 

1.1.2    Nonlinear Model Identification from Spectral Analysis of Markov Operator 

We provide a numerical approach to estimating nonlinear stochastic dynamic models from time-series 
data. After possible dimensional reduction, time-series data can be used to construct an empirical 
Markov model. Spectral analysis of the Markov model is then carried out to detect the presence of 
complex limit cycling, almost invariant, and bi-stable behavior in the model. Model parameters are 
expressed as a linear combination of basis functions over the phase space. A least squares minimization 
is used to fit the basis hind ion coefficients in order to match the spectral properties of the respective 
Markov operators. The approach is demonstrated on the estimation of a nonlinear stochastic model 
describing combustion oscillation data. 

We provide an approach for estimating nonlinear dynamic models, possibly driven by noise. The 
it ion approach is based on comparing the spectral properties of the empirically constructed 

Markov operator with the model-based Markov operator. A nonlinear model is fit such that its as- 
sociated Markov operator has similar spectral properties as the empirical Terms in the stochastic 
differential equation model are estimated by a linear combination of basis functions. The coefficients 
appear in the numerical approximation of the Markov model, and are fit using least squares mini- 
mization. Model validation is motivated spectral methods developed in [53] [51] for the comparison of 
dynamical systems. 

Spectral method for analysis and comparison 

In this section, we describe spectral methods for the analysis and comparison of the dynamical systems. 
The material for this section is taken from [20] [53] [51]. Also, see [45] for an introduction to these 
concepts. 

Consider the stochastic dynamical system 

-^ = b(x) + (T(X)C,   xeXeRd, (1.42) 

or its discrete time equivalent. 
,=T(xk^k) (1.43) 

where each xk € X G Rd is the state vector and & € U is sequence of i.i.d. random noise. Associated 
with T is a stochastic transition function p(x, A), which gives the transition probability to jump from 
point x € X to set A € B(X), where B{X) is the Borel sigma algebra of X. For deterministic dynamics 
i.e., when fn = 0, we have p(x. A) = ST^(A), where S is the Dirac delta measure. Stochastic transition 
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function can be used to define two linear transfer operators called as Perron-Frobenius and Koopman 
operators. Here we consider the finite dimensional approximation of the P-F operator. To do this we 
consider the finite partition of the state space X i.e., 

X = {DX Dm} (1.44) 

such that Di 0 Dj = 0 for i ^ j and Uj^Dt = X. P-F operator on the finite dimensional vector space 
Rm can be represented by a matrix P : IRm -► Rm as follows: 

V^»,    M-.l - (145) 

The resulting matrix is non-negative and because T : D, —+ X. YlT=i ^V = * *e-1 ^ ls a Markov or a 
row-stochastic matrix. 

Important complex dynamical features of the dynamical system T can be captured using its Markov 
matrix P. For example long term or asymptotic behavior of the dynamical system T is captured by 
the invariant measure or more appropriately physically relevant measure. Finite dimensional approx- 
imation of the invariant measure or the outer approximation to the support of the invariant measure 
can be obtain from the left eigenvector of Markov matrix P with eigenvalue one. i.e., 

fxP m 1 • p 

Similarly the presence of periodic or limit cycling behavior in T can be captured by the complex 
unitary spectrum and the corresponding eigenvectors of P. Moreover if the Markov matrix P has real 
eigenvalue close to one then it is the indicator for the presence of almost invariant or bistable behavior 
in the dynamical system T. For more detail on this topic refer to [19)[20]. 

We outline an approach to numerically approximate the stochastic dynamical system (1.42) based 
on the empirically obtained Markov matrix P. 

Set 
d 

fc=l 

Under certain regularity conditions [45], the evolution of the density, p under (1.42) satisfies the 
Fokker-Planck equation, 

dp   i J-,   d2  ,    ,   A d 

1,J=1 J t=\ 

:=Tp,   *>0,x€Rd. (1.47) 

Consider the finite-dimensional (discrete-space) approximation of T by discretizing the underlying 
phase space X with the partition X following (1.44). Therefore, the distribution p is approximated 
by a finiite-dimensional vector u(x) € Rm and let 

U = di&g{u} €Rmxm, (1.48) 
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where diag{u} is a diagonal matrix whose entries are the elements of the vector u.   Similarly, the 
operators are approximated by their finite-dimensional matrices: 

fm?t FeRmxrn. 

Continuing this way, write the discretized approximations of a{j{x) and 6»(x), respectively, 

aIJ{x)^Aij(x)eRm,   bi(x)^Bi{x)eRm. (1.49) 

Similarly we write the discretized differential operators 

1     d o        m^m      ö 
2dx,dxj~

Di>€&     ' dxr'  * 
Next, define the matrices: 

D2(U) 

D\U) 

D(U) 

= [D2
nU,...,D2

jU,...,D2
ddU]e 

= [DxU,..., AC/,..., DdU] e Rmxmd 

m [D2(U),Dl{U)] eRmx(md2+nMi) 

ixmd2 

and 

A:= 

ill 

Hj 
ucl- 

Add 

C:= A 
B 

I Bl 

,    B :=      Bj 

[Bd 

■*md 

The infinite-dimensional Fokker-Planck operator is approximated in finite dimensions by 

Tp*zFu = D(U)C. 

We next write (1.47) in discrete time, with 

at st 

(1.50) 

(1.51) 

(1.52) 

(1.53) 

(1-54) 

(1.55) 

where St is the time step which the time-series data was obtained. Substituting this into the left side 
of (1.47) results in the Markov matrix appearing equation (1.45), 

ut+i = ut + StFut 

= [ut + StD(U)C] 

:= Put. (1.56) 
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We empirically obtain P directly from data by discretizing the underlying phase space (Rd) to 
obtain this discrete-space approximation. The spectrum of P is given by PV = VA, where 

V = [voiVi,V2,...,i>Tn],   A = rfiap(A0,A1....,Am). 

Under suitable conditions there exists a steady distribution VQ where Ao = 1- 
Consider a single eigenvector v € Rm with eigenvalue A. We have 

and after rearranging, 

PV = [„ + StD{V)C] = Xv, 

D(V)C = ^—U := w. 
ot 

(1.57) 

(1.58) 

(1.59) 

This can be solved for C which will give the functional forms of b(x) and a(x) appearing in (1.42). Of 
course, for a single eigenvector, there are multiple solutions. We solve (1.59) for multiple eigenpairs: 
the first k for example. We have 

(1.60) 

Again, for k small, there are multiple solutions. We next restrict C to be a linear combination of k 
basis functions. Let {4>j} be a set of basis functions where <j>j : Rd —► R, j = 0,1,2,..., n - 1, such as 
Hermite polynomials. Define the matrix consisting of these basis functions as column vectors: 

D(V0) 
c = 

WQ 

. Diyk.x) _ . Wk~i . 

$:=[0O,0l,...,<^-l]€Rmxn. 

We rewrite (1.54) in terms of these basis functions. For each i, j take 

Aij    — $a,,,   an e R* 

B, «ft,  ft€R", 

(1.61) 

(1.62) 

(1.63) 

and 

Q := 

on 

ft »j 

<*dd 

€R' nj? ß:= -h 

ßd 

e ?.«■'. 

c := 
Q 

ß 
£ m{nd?+nd) 

As in (1.51-1.53), define the differential operators restricted to these basis functions: 

D%(U) := [£?,{/«,.. ■, I%U*,.... D%//*] € R*"*""2 

:=[£»!£/* At/«,..., DdU$\ € Rmxnd 

:= [D%{U).Dl{UJ\ € R-nxf-^-Hxi). 
Oi(V) 

(1.64) 

(1.65) 

(1.66) 

(1.67) 
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Rewrite equation (1.60) as 

D*kc := 
D*(VQ) 

L DM-!) J 
c = 

WQ 

Wk-1 

:=Wki (1.68) 

where D*tk € R*™*(™*2+™^ c € R(^
2
+^), Wfe € Rkm. 

We solve for c through least squares: 

rain [D+tkc - Wk}* [D^kc - Wk], (1.69) 

which results in 
'    c=[D^kD*,k]-

lD'<tJcWk. (1.70) 

We would like to compare the eigenfunctions of the approximated model with the eigenfunctions 
appearing in equation (1.57). We compute the approximate Markov matrix: 

A d d 

D(c) := £ Dj-diagi*^} + J]Djidiag{*A}. 

The approximate Markov matrix is then 

P = I + 6tD(c). 

(1.71) 

(1.72) 

)• We then compare the spectrum of D(c) with the spectrum in (1.57). 

Application Example 

In this section, we construct a reduced order model describing nonlinear oscillations of flame dynamics. 
High-speed video data was obtained from the UTRC combustion rig described in [73], and proper 
orthogonal decomposition (POD) was used for dimension-reduction. We briefly describe how the 
Markov matrix was empirically constructed. 

Data Reduction using POD Modes 

From the image data, the mean field was removed from each of the images and the POD modes were 
computed. It was found that the first two POD modes account for more than 80% of the energy found 
in the data set. Hence, we consider a two dimensional state space x £ R2. The two-dimensional time 
series is constructed via 

xk = x\,k 

Z2,k 

(4>i*ik) 
(<fa,yk) 

(1.73) 

where yk denotes the /c-th image with the mean field subtracted. 
The time series of POD coefficients, given by {xk}, were obtained from projecting the original data 

onto the POD modes. The resulting phase space (plotting x\jk vs. X2yk. for k = 1,... ,iV) is shown 
in figure (1.1). The phase portrait shows a noisy limit cycle where the density of points is clearly 
non-uniform. The rotational speed of the limit-cycle varies depending on the state. This indicates 
that a nonlinear model is necessary to match this time series. 
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Projected Phase Space 

20 
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-150 -100 -50 
POM 1 

~t  50 

Figure 1.1: The phase space of the coefficients resulting from projection of the data onto the first two 
POD modes 

Empirical Markov Model 

A Markov model was computed from this time series data through equation (1.45). The result is a 
non-reversible Markov model with many eigenvalues, as shown in Figure 1.2. Note that the eigenvalues 
can be collapsed toward the origin by taking powers of P. The eigenvector corresponding to the unit 
eigenvalue, shown in Figure 1.3 confirms the steady distribution of the trajectories. 

Figure 1.2: The eigenvalues of the Markov model. 

The phase of the eigenvector associated with the 2nd eigenvalue is shown in Figure 1.4. It reveals 
the oscillatory nature of the dynamics. 

Nonlinear Model Extraction 

In this section we develop a second order stochastic differential equation model of the form 

xi = 6i(xi,x2) -fon^i 

x2 = 62(^1,^2) +S-22& (1.74) 

to capture the essential dynamical behavior of the reduced set of data from the previous section. 
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magnitude of first eigenvector 
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Figure 1.3: The first eigenvector shows the invariant distribution 

-156-100-50    0    50 

„ 60 

40 Ik 
0.2 

20 

A J 
0.1 -20 r 
0 

-„ 
-150-100-50    0 50 

Figure 1.4: Magnitude(left) and phase(right) of the second eigenvector 
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Before going into the details of the model we would like to summarize some of the key dynamical 
features of the reduced set of data as captured by phase portrait in Figure 1.1. 

• Dynamics consist of stable limit cycle where the motion along the limit cycle is in clockwise 
direction. 

• The limit cycle is parameterized by angle 6. Speed along the limit cycle is nonuniform, speed of 
the limit cycle is less for 6 € [0, — f ] compared to other value of 6. 

We would like the model to capture this essential dynamical behavior along with the amplitude of 
the limit cycle and the average speed or the frequency of the limit cycle. We choose a reduced set of 
eigenvalues closest to the unit circle to approximate the Markov model. Due to the cyclic nature of 
the data, we use basis functions $ in radial coordinates, expressed as separable functions in r and 0 

0fc,o(zi>^2) = rk 

4>k,2j{x\,x2) =rkcos(j9) 

<f>ky2j+i(x\,X2) = rksin(jd)r 

fc = 0,l,2,..., ; =0,1,2.... 

where 

x\ = rcosu 

X2 = r sin 6 

The least squares fit (1.70) resulted in basis function coefficients producing the terms appearing 
on the right hand side of (1.74). The functions &i(xi,£2) a^d &2(xi,X2) a-PPear m Figures 1.5 and 1.6, 
respectively. The resulting functions <TU{X\,X2) and 0-22(^1,^2) are qualitatively similar. 

Figure 1.5: The estimated b\(x\,X2) appearing in (1-74). 

The resulting approximate eigenfunctions of the estimated Markov matrix are shown in Figure 1.7 
and 1.8. Figure 1.7 shows the approximate invariant distribution which closely resembles that shown 
in Figure 1.3. Similarly, the second complex-valued approximate eigenfunction is shown in Figure 1.8 
which closely resembles the second eigenfunction shown in Figure 1.4. The match in the eigenfunction 
indicates a good match between the model and the data in terms of long term dynamics. 
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Figure 1.6: The estimated 62(21,32) appearing in (1.74). 
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Figure 1.7: The approximate first eigenvector of the estimated Markov matrix 
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Figure 1.8: The approximate magnitude (left) and phase(right) of the second eigenvector of the esti- 
mated Markov matrix 
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1.1.3    Analysis of Complex Spectra and Metastability 

The purpose of this paper is to develop methods for model reduction for diffusion processes that 
exhibit cyclic behavior. For this purpose we extend techniques based on the spectral theory of Markov 
processes to the case of complex spectra. The main idea is to augment the state process for the 
diffusion with a clock process. For each complex eigenvalue for the original diffusion there exists a 
real eigenvalue for the augmented process. Results concerning metastability (or quasi-stationarity) are 
then applied to the augmented process. For the special case of a linear diffusion in two dimensions, 
this is analogous to analyzing the process in a rotating coordinate frame. The results are illustrated 
through a linear diffusion, and an empirical model of combustion dynamics. 

Extensions of the classical Wentzell-Freidlin theory for model reduction have appeared in numerous 
papers over the past decade. Much of this work has concerned Markov processes that are reversible 
[59, 21. 13, 37, 14, 15]. The goal in these papers is to understand the statistics of exit times from a 
given subset of the state space. 

Some results for non-reversible Markov chains are available. Fill's paper [29] extends the convergence- 
rate bound of Diaconnis and Stroock [22] to non-reversible Markov chains.   For this purpose the 
transition matrix is replaced by its symmetrization, and the rate of convergence is bounded by the 
eigenvalues of the resulting self-adjoint matrix. These ideas are the basis of [38] that establishes exit 
time statistics from a set for a discrete-time non-reversible Markov chain. 

Extensions of Wentzell-Freidlin theory to non-reversible processes appeared for the first time in 
[38]. The foundation of this paper is the theory of quasi-stationarity, building on the work of [27]. 
The main idea of [38] can be summarized as follows: Suppose that X = {X{t) : t £ T} is a diffusion 
process evolving on X = Rd, with transition semigroup denoted {P* : t € T}. We say that A is an 
eigenvalue with (non-zero) eigenfunction h if for each t. 

Pth = e**h 

Suppose that A is real and negative. In this case we can assume that h is also real-valued, and we also 
assume that it is continuous. We would like to consider Doob's h-transform. Pl :=e~AtI^lPtIh, where 
Ig is the multiplication operator: For each x € X and A C X we have Ig{x,A) = g(x)l{x € A}. The 
/i-transform, like importance-sampling, is intended to lead to a new Markov model whose properties 
provide insight into the problem of interest. Unfortunately {P1} is not a valid Markov semigroup since 
h may take on negative values. Instead we consider the following restricted definition. 

Let M denote a connected component of the set {x : h(x) > 0}. We let Tm = inf(£ > 0 : Y(t) € M'). 
and for t £ T denote t. = t AT.. The twisted semi-group is defined for each t € T, x € X, and A e B 
(i.e. A Borel measurable) via, 

P'(x, A) := ^yEx [e-M-h(X(t.))l{X(t.) 6 A}} (1.75) 

Under general conditions, it is shown in [38] that the twisted semi-group corresponds to a diffusion 
process on M that is exponentially ergodic. Exponential ergodicity of the twisted process then implies 
a form of quasi-stationarity, and from this it follows that the exit time from M is approximately 
exponentially distributed with parameter |A|. 
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The inspiration for consideration of the twisted process was the work of [27], and techniques from 
the large deviations analysis contained in [5, 41). 

The main result of this paper is the extension of the results of [38] to the case in which A 6 C is 
complex. The main idea is to augment the state process for the diffusion with a clock process. For each 
complex eigenvalue for the original diffusion there exists a real eigenvalue for the augmented process. 
Results concerning metastability contained in [38] are then applied to the augmented process. 

It is assumed that X = {X(t) : t e T} is a diffusion process evolving on X = Rd. with transition 
semigroup denoted {Pl : t € T}. Letting u denote the drift, and E the covariance matrix, the 
differential generator (see e.g. [45]) is defined for C1 functions h: X —* C by Vh (x):= 

EU,(I)^MX) + IE^(I)_^MI) (1.76) 

I ij J 

or, in more compact notation, 
V = u ■ V + itrace (EA) 

For each ß > 0 the resolvent kernel is given as the Laplace transform. 

Rß.= /    i 
Jo 

e-0tPldt. (1.77) 

We write R := Rp when ß = 1. 
It is assumed as in [38] that the diffusion is V-uniformly ergodic: For a probability measure v on 

B, some constants 6 < oo and T > 0, a function 5 : X —► [0, oo), and a V : X —» [1, co): 

w  <  -rv + bs 
R   >   s<8>i/. {     } 

The second inequality in (V4) means that the function s and probability measure v are small. This 
terminology and the outer product notation are taken from [57]. This 'smallness assumption' is 
equivalently expressed. 

R{x, A) > s(x)i/(A),        x € X, A € B. 

Suppose that V has a complex eigenvalue A, which we write as 

A = -r + id 

with T > 0, and d ^ 0, with associated eigenvector h. Consider the clock process defined by, 

*(0 = *(0)ei,w,        *>0, (1.78) 

with initial condition restricted to the unit circle in C, which is denoted U. The clock process is 
Markov, as is the bivariate process, 

™-Q-  '*» 
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In fact Y is a diffusion on Y = X x U whose covariance matrix for y is given by, 

EK(»):=dwg(E(x),0). (1.79) 

Throughout the paper we adopt the notation y = (x, 0) for y € Y, with x € X, <f> € U. 
We define for each real ß € R the real-valued function, 

g0(y) = Re ((e*/*)fc(*)),        3/ = (x,*) 6 Y. (1.80) 

Proposition 1.1.1 For each ß € R the function gß is an eigenfunction for the process Y, with 
eigenvalue Ay- = -I\ 

Proof.  The differential generator for X can be extended in the obvious way to Y.   Given the 
simple dynamics of $ we have for any function /: U —> C, 

Vf(d>) = iHf\d>) 

With /(<£) = 1/0 the eigenfunction equation holds, 

Vf (<f>) = -it?0/W>)2 = -.0/(0),        d> € U. 

Hence the generator applied to g$ gives, 

Vg0(y) = Re{(ei(3/<f>)Vh(x)) 

+ Re (-iti{eiß/4>)h (x)) 

= Re ((ei0/<j>)\h(x) 

+ -^(e^/0)/i(x)) 

= -r<fa(s/), y€Y. 

The twisted process 

To define the twisted process we fix ß = 0 in the definition (1.80). and let M denote a connected 
component of {y : go(y) > 0}. It is assumed that this set has nice topological properties: M is equal 
to the closure of its interior. Following [38], we define T. = inf(t > 0 : Y{i) e Mc), and the associated 
twisted process as follows: 

The twisted process is the Markov process Y with state space M whose semigroup is defined 
using (1.75) based on the eigenfunction go. Equivalentlv, for each / G Loo(M), and any x € M, 
Psf(y):=Ey{f(Y(s))} = 

1  -Ey\go{Y(» A T.))f(Y(s A T.)) exp((s A T.)T)] 
9o{y) 

The twisted process has a generator denned for C2 functions /: Y —> C by, 

Vf = 9ÖlV{g0f) + 17. (1.81) 
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Two key assumptions arc imposed in [38]: First, that the diffusion is hypoelliptic (which is used 
to conclude that the resolvent possesses a density with respect to Lebesgue measure). Second, it is 
assumed that the gradient of the eigenfunction does not vanish on the boundary of M. The gradient 
assumption is maintained here. To ensure that Y is hypoelliptic we assume that X is elliptic, meaning 
that its covariance is strictly positive. These assumptions are collected together as follows: 

S(x) > 0, 

Vx<fo(y) = Re(<t>-lVh(x)) ± 0,Vy € ÖM. (1.82) 

h is not hard to see that the assumption (1.82) always fails when X is a diffusion in one-dimension. 
We see in the next section that it does hold in many examples, such as the linear diffusion in two or 
more dimensi 

The following result is a consequence of Theorem 3.7 of [38]. The reader is referred to this paper 
for a precise definition of metastability — Its main conceptual conclusion is that the exit time T. is 
approximately exponentially distributed, and that the process 'almost' reaches a 'local' steady-state 
prior to exiting M. 

Theorem 1.1.2 Assume that (V4) is also satisfied for a continuous function V: X —► [1, oo). Suppose 
that h is an eigenfunction with complex eigenvalue A = —T + iti satisfying the following conditions: 

(a)0<r<f. 

(b) 9o(y) > 0 for all x € M.. and g0{x) = 0 for x € <9M := M \ M. 

(c) Condition (1.82) holds. Consequently, fory€ dlvl,   (Vp0(^))T2y(2/)(Vy0(y)) > 0. 

(d) Kn := {x € X : V(x) < ngo(x)} is a compact subset of X for each n > 1. 

Then, 

(i)   The escape-time from M for the twisted process is infinite a.s. for Y(0) =j/G M; 

(ii)   The twisted process is V\-uniformly ergodic with Vi(y) = V(x)/go(y), y € Y. 

(iii)   The set M is both metastable and V-metastable, with exit rate T(M) = IV(M) = T.   In 
particular. 

< oo    otherwise. 
a 

The proof of Theorem 1.1.2 amounts to establishing a version of (V4) for the twisted process. We 
can follow the same steps as in [38] to construct the required Lyapunov function. 

For a given 0 < a < 1 write 

Vi := gö'V, V2 :m g-lg«,     and V := V, + V2 . 
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We denote Go = log(po)- where go is the eigenfunction for Y. From (V4) and the eigenvector equation 
we have, 

VVX [I^VIgo + ri]gölV 
■»-lfm/ i n/i =   gZl[DV + rV] 

-r <    -(r-TM + bg^s 

VV2    =    [I^VIgo+TI\g^ 

=   9Q-l[Dgg + rgS] 

Following arguments in [38], we obtain a version of (V4) for the twisted process: For a finite constant 
60, and a compact set S C M. 

T>V<-l2(T-r)V + bols. 

Examples 

We discuss an analytic example as well as an example motivated by an empirical model of limit-cycling 
combustion dynamics. 

Ornstein-Uhlenbeck process 

Consider the Ornstein-Uhlenbeck process, 

dX (t) = AX(t) dt + dW(t). (1.83) 

where W is a full-rank Gaussian process. Suppose that A is a complex eigenvalue, and v a (non-zero) 
left-eigenvector for A, satisfying 

ATv = Av. 

The generator for X shares this eigenvalue, and the function h(x) = vTx is an eigenfunction: 

Vh (x) = (Ax)TVh (x) 4- ^trace (SA/i (x)) 

= xTArv = Ah(x). 

We now check to see if (1.82) is satisfied. We have, 

Vxg0(y) = Re {4>~lv),        y = (x, 0) 6 Y. 

This is zero if and only if Re (0-1i>fc) = 0 for each k = 1,..., n. If this holds for some 4> € U, it then 
follows that v* = i<t>~lv is a purely real eigenvector for A, which is impossible since A is complex. We 
conclude that (1.82) is satisfied. 

Consider the two-dimensional model with 

A = 
-a     1 
-1    -a 
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where a > 0. The matrix A possesses a pair of complex eigenvalues in the left-hand complex plane, 
satisfying T = a: 

eigCA) = -a±i. 

A left eigenvector for A is given by vT = [-1, z], which gives 

Re(e^V"X(0) = cos(t)Xi(t) + sin(t)X2(t). 

0) satisfies Re(vrX(0)) > 0, we can expect that Re(e~JtvTX{t)) > 0 for a period of time 
appr- v exponentially distributed, with mean 1/a. Applying Theorem 1.1.2 we conclude that 
the first exit time T.  = inf(£ > 0 : Re(e~jtvTX(t)) = 0) shares the following property with the 
exponential distribution: 

E[e' ,eT.i = oc    if e > a 

< oc    otherwise. 

□ 

Empirical Model of Limit-Cycling Combustion Dynamics 

We apply the analysis to a Markov model describing the nonlinear dynamics of limit-cycling combustion 
oscillations. The data was obtained from an experimental combustion rig described in [73]. Th< 
dimensional phase space was obtained as in [?] as follows. A POD analysis was done on the temporal 
flame images and the data was projected on to the first two dominant POD modes. The dynamics of 
the flame data projected on to this two-dimensional space is shown in Figure 1.1. The phase portrait 
shows a noisy limit-cycle where the direction of oscillation is in the clockwise direction. 

A discrete time Markov model was constructed for the dynamics on this two-dimensional space. 
The eigenvalues are shown in Figure 1.9. The complex eigenvalues suggest cyclic behavior and a 
nut,t.stabilitv analysis can be done using the corresponding eigenfunctions as described in the previous 
sections. 

:: 

Figure 1.9: Eigenvalues of the Markov matrix associated with the combustion dynamics data shown 
in Figure ??. 

We describe the metastable sets associated with the eigenvalues shown on the right in Figure 
1.9. In particular, the eigenvalue at A := |A|e*^ = 0.98 + jO.995 is associated with an eigenfunction 
that varies in the tangential direction and has no radial variation.  The associated eigenvector h(x) 
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is complex as shown in Figure 1.10. We take the clock process to be the discrete time equivalent of 
(1.78). 

^ = ^^0,        *=1,2,..., 

where ip is the angle of the eigenvalue A. Setting 0o = 1> the eigenfunction of the associated twisted 
process is 

go(y) = Re(e-
i*kh(x)),        y = (x,<p)eY. 

-150 -100 -50      0      10 

Figure 1.10: The complex eigenvector h(x) (magnitude on right, phase angle on left) associated with 
the complex eigenvalue A = 0.98 + jO.995 shown in Figure 1.9. 

The plot in Figure 1.11 shows the sign of go(y) for different phase-shifts (i.e, after multiplication 
by c~*^fc for different values of k.). Note how the sets with positive support and negative support 
rotate around the phase space and the exit time marks the point when the system exits one of these 
rotating sets (i.e., exhibits a phase-shift in its oscillations). 

•ISO -100  -SO      0      50 

•150    too  -50      0      50 

-ISO -H»  -50      0      SO 

ph*M«M4 

-150 -100  -SO      0      SO 

Figure 1.11: The sign of the eigenfunction with a complex eigenvalue close to the unit circle, rotating 
wit h incremental phase-shifts of J between 0 and 3TT 

4 • 

The eigenvalue A = 0.89 is purely real and hence has a purely real eigenvector with no tangential 
variation, but variation in the radial direction. The sign of the eigenvector is shown in Figure 1.12. 
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Since the eigenvalue is real, this eigenvector is not associated to any cyclic behavior. This eigenvector 
and the related exit time simply indicates when the system moves from a state of low amplitude 
oscillation to high amplitude oscillation, and vice-versa. 

abs evecS . 
■     : 

5 A JL 
M04 

0   M 
1     Jo2 

1° 
r r 
|-o, 

Figure 1.12: The sign of the radial eigenvector of the Markov matrix. 

Fin complex eigenvalue A = 0.851 +j0.99 has an eigenvector exhibiting both tangential and 
ote again how the metastable set rotates around the phase-space, as indicated 

by the phase-shifted sign of the eigenvector shown in Figure 1.13. 

^ß0    it *3jjßr    I 

Figure 1.13:  The sign of the eigenvector with tangential and radial variation, shown rotating with 
incremental phase-shifts of | between 0 and ^-. 

By examination of the magnitudes of the eigenvalues, the eigenvectors associated with these three 
metastable sets have decreasing mean exit times.  This is intuitively confirmed by the fact that the 
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sets become increasingly complicated. A hierarchy of such sets along with the spectral properties of 
the Markov matrix can be used to construct a reduced order model of the measured process through 
techniques described in [64]. 

We have presented a framework for analyzing Markov models with semi-rotational dynamics by 
considering the complex spectra, and illustrated the approach using an application involving limit- 
cycling combustion oscillations. The ultimate goal of this research is to construct low order models 
that capture essential structure, such as the hidden Markov models proposed in [38]. The most 
interesting open problems are application specific. For example, can we justify the consideration of 
a two-dimensional model obtained from POD coefficients? If not, what are alternative approaches to 
treat the full-order Markov model? 

1.2    Model Reduction 

1.2.1     Tangent Space Approach to Nonlinear Model Reduction and Identification 

In this section we discuss a novel approach for model reduction of nonlinear systems with output 
measurements based on the analysis of linear derivative maps [74]. With every nonlinear system 
one can associate a linear derivative map that evolves vectors on the tangent space. At each point 
along a nominal trajectory, a local observability gramian defined on the tangent space is computed 
based on the linear perturbation dynamics, which is then used to identify a balanced local coordinate 
system. These local coordinates can be patched together to construct the global coordinates for the 
reduced order representation of the system. A computational approach is described for the empirical 
construction of the gramian on the tangent space and for the alignment of the local coordinates to 
obtain the global coordinates. Simulation results and examples are presented to demonstrate the 
application of the proposed method. 

Previous methods of model reduction include, for example, techniques based on proper orthogonal 
decomposition (POD) for of fluid flows problem [11], [62], balanced truncation in control systems [54], 
[65], [43], spectral analysis of transfer operators [51], [52], and fast and slow manifold decomposition 
[30] in dynamical systems. 

Derivative Gramian and Model reduction 

Consider the model reduction problem for a discrete time dynamical system with output measurement 
as follows: 

Zjfc+l     =     f(Xk) 

yfc   =   h(xk) (1.84) 

where x G X C W1 is a compact state space and y € Y C Rm. Associated with the nonlinear system 
is a linear derivative map obtained from the linearization of the system along a nominal trajectory. 
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The linear derivative map evolves vectors on the tangent space and is defined as follows: 

df 

4>k   =    ö^(xk)rjk=:C(xk)r)k (1.85) 

where A(xk) ■ TXkX —► Tj^^X and C(xk) : TXkX -* Th^Xk)Y. Important information about the sys- 
tem dynamics can be obtained from the linear derivative map. For example, the Lyapunov exponent, 
which can be thought of as the generalization of eigenvalues from linear systems to nonlinear systems, 
are obtained from the linear derivative map. The negative (positive) value of maximum Lyapunov 
exponent implies exponential convergence (divergence) of nearby system trajectories. Evaluation of 
the derivative map at the trivial solution is widely used in the local stability analysis of the trivial 
solution. 

Under suitable technical conditions [74], for a given point x on the nominal trajectory the observ- 
ability gramian 

oc    /*-> \' M 
Ö(*> = E    II M*f)     C'(xk)C(xk) n AW (1.86) 

is well defined. It is easy to check that Q(x) is positive semi-definite and hence defines a pseudo- 
metric on the tangent space at x, with (£,??) Q(X) = ^'Q(X)TI, where £ and rj are vectors belonging to 

TXX. Furthermore, one can verify that Q(x() = A (xe)Q{x£+i)A(xi) + C (xi)C{xt) where x/+1 = 
/(xj), which resembles equation (7) in [42], where Lall and Beck write the Lyapunov inequality for a 
generalized observability gramian. 

Since Q(x) is positive semidefinite we know that there exists a unitary transformation U(x) as 
a function of x such that U (x)U(x) = I and £(x) = U(x)Q(x)U (x) is a diagonal matrix. Now 
consider the coordinate transformation on the tangent space rp — U(X)TJ, TJ = U (x)ip so that il>k+\ — 
U{xk+i)A(xk)U'(xk)ipk '= Mxk)iPk and <pk = C(xk)U'(xk)r)k. The derivative gramian in the new 
coordinates can be written as Q(xe) = Y^T=e-Ä (xl$~1)C(xk)'C(xk)A{xe

:~l). Now 

ifx*"1)      =     ^Xfc.O^Xfc-s)-"^) 
=   C/(xfc)>i(a:fc-i)A(xfc_2) ■ • ■ A(xt)U'(x() 

=   U{xk)A(xk-l)U\xt) (1.87) 

Hence we have 

Q(xe)   =   U(xl)Y,A\xk
e-

l)C\xk)C{xk)A{xk
l-

x)U\xt) 
k=t 

=   U(xt)Q(xe)U'(xt) = £(x<) 

Note that the local coordinate U{x) defined at each point of the tangent space provides a diagonal 
decomposition of the derivative gramian at each point x. One would like to patch these local coordinate 
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to construct the global coordinate on the phase space. Here we proceed formally and assume that 
such global coordinate system exists i.e., z = T(x) such that £' = U(x). In the next subsection 
we provide a computational approach for aligning these local coordinates to approximate the global 
coordinates. 

We assume that in the diagonal matrix S(x) has the following structure. 

*-(? 
o 

s2 

and that Ei >> £2. Let z = T(x) and we partition the state z based on the partition of its derivative 
gramian £ i.e., z = (z\z2) = (Ti(x),T2(x)) = T[x). 

It turns out that the reduced order system with the output measurement 

4fi = ^(/(r-'t^o))) 
yk   =   hiT-'(4.0)) (1.88) 

can be shown to have non-positive Lyapunov exponents with diagonal derivative gramian £i(£fc,0). 
The computation of the empirical gramians is similar in spirit to [43] and [62] but with a key 

difference: the formulae in [43] subtract the temporal means from the trajectories, which is not 
applicable in the current setting. Indeed, for the empricial gramian based on the derivative mapping, 
we must track the trajectories of the nominal mean states and outputs. 

Local Tangent Space Alignment 

The global coordinate system T computed from the localized coordinates so that $*< % U(%) can be 
approximated through an alignment procedure. Denote the /C-dimensional vector all ones by e/f. We 
approximate the global coordinates T using the initial condition data points in {A/o • • • MN } following 
the procedure of [79]. Further analysis and refinements appear in [78, 76, 46]. Locally, the balancing 
coordinates are given by the transformation $k = U'{xk)Mk- Suppose that there is sufficient overlap 
between the sets of initial conditions [78] and that there are M distinct initial condition points. 
Furthermore, suppose that the partition is such that z\ £ Rd. In other words, the reduced order 
model will be of dimension d. We now construct the global coordinates r^ for k = 1,..., N. Write 
Tfc = [*£,«..,rjf] and seek to minimize Ek = Tit (I - ~keK^fc) ~ L^k for each k. The alignment 
matrices Lk can be determined separately by use of the Moore-Penrose pseudo-inverse. The global 
coordinates Tk are approximated by minimizing 

Y, \\
E

*\\
2

F = E PW^ft = \\TSW\\2F = Tr (TSWWTSTTTY (1.89) 
k k 

where T = [rl,...,rM] G RdxM, S = [5i,...,5N] <E KMxKN where Sk € KMxK is the 0-1 selector 
matrix such that TSk = Tk, and W = diag(Wi,..., WN). We apply the constraint that TTT = /. 
The rows of T are taken to be the eigenvectors associated with the next smallest 2nd through d + 1st 
eigenvalues. The reader is directed to [79] for further details on this computation. 
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Example: Nonlinear System Reduction 

We illustrate the computation of the empirical gramians and the global coordinates.   Consider the 
controlled nonlinear system 

nt+i = rk + 0.1 (R - rk) (1 + cos(lO0)) 

ek+i=ek + A + (uk-ek) 

1 \ 
Zk+1 -Mr + 0.01(1 + 005(0)); 

uk = uk-\ + A,   uo = 0 
yk = [rk cos(öfc), rk sin(0fc), zk\. (1.90) 

This system has equilibrium rk = R,   6k = uk,   zk = 0.  An example of perturbation and noi 
trajectories with A = ^ are shown in figure 1.14. Notice that the ^-coordinate, while small relative 
tot lie radius of R = 1, decays slowly. 

IAJL ■ 

Figure 1.14: Nominal trajectory shown by red circles and example perturbation trajectories shown by 
blue dots and stars. Initial perturbations are in the +/ - z (dots) and +/ - r (stars) directions. 

A set of initial conditions shown in figure 1.15 (left) was used to compute the empirical derh 
gramians and the global balancing coordinate system. Locally, there are two dominant singular values 

he gramians, based on the simulation results. The resulting principle component vectors (scaled by 
the singular values of the gramian) associated with four points are shown in figure 1.15 (right). The 
vectors show that there are two dominant component directions in the 0, z plane. Although, geomet- 
rically the 2-coordinate is small compared to the 6 coordinate and about equal to the r componen 
is dynamically more important because it decays slowly. 

The principle components give only local information about the vector field. We employ the align- 
ment procedure described in section 1.2.1 to approximate the global coordinates T. Although we have 
previously discussed the local principle components associated with the derivative dynamics in terms 
of the global coordinate system, the alignment procedure requires no a priori information regarding 
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(a) Nominal Trajectory (b) Principal Components 

Figure 1.15: Left: Nominal trajectory shown by red circles and the set of initial conditions used 
to compute the empirical gramians. Right: Local principle component directions computed at four 
different points on the nominal trajectory. 

the global structure of the principle directions. Figure 1.16 (left) shows the resulting approximation 
of the 6 coordinate based on the global alignment of local principle component direction. The figure 
shows (with the appropriate phase shift) almost a 1-1 relation between the empirically determined 
global coordinate and the actual 6 value of the initial condition. 

Figure 1.16 (right) shows a similar relation between the empirically determined z coordinate and 
the actual z values of the initial condition points. Again (with scaling of -1) there is a near 1-1 
correspondence. This example illustrates that a set of reduced global coordinates can be approximated 
from the local gramian information, with no a priori information regarding the underlying coordinate 
system of the dynamic model. 

Extensions to Dynamic Texture Models 

The tangent space approximation in terms of local PCA and the computations of the empirical ob- 
servability gramian provides a framework for calibrating hybrid affine or nonlinear dynamic texture 
models, which is the subject of ongoing work at UTRC currently funded by AFOSR. Following the 
methodology for identifying balanced stochastic systems in [3] we can use the tools described in this 
section to identify generalizations to the dynamic texture models originally presented in [23]. Such 
generalizations are appropriate for video data that exhibits nonlinear behavior or mode switching 
which can be modeled by a piecewise affine [61] dynamic texture. This is similar in spirit to the 
identification methods based on statistical clustering appearing in [28, 56]. Based on the local PCA 
representation of the data, locally affine models can be calibrated based on standard L2 techniques 
[49]. The model switching is determined by relative distances between the model's current state and 
the local means of neighboring data patches. The concept of nonlinear dynamic textures has appeared 
in [48, 4, 47, 77]. An example of a piecewise affine dynamic texture model of the beach video sequence 
[4] is shown in Figure 1.17 (bottom row), where it is compared with a linear dynamic texture model 
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(a) 6 coordinates (b) z coordinates 

Figure 1.16: Left:The 6 component of the estimated global coordinates T compared to the 9 com- 
ponents of the initial condition sets A/o . MN-   Right:  The z component of the estimated global 
coordinates T compared to the z components of the initial condition sets JVo *NN- 

(top row). The top row shows that the frames of the linear dynamic texture model capture the bulk 
motions of the waves and eventually saturate. The piecewise affine model frames shown in the bottom 
row capture the different dynamic modes of the waves coming inward and outward at the same time 
increasing the image quality and avoiding saturation effects. 

1.2.2    Empirical Controllability Gramians from Trajectories 

In this section we provide more details on the computation of empirical gramians. 
Suppose that for the controlled system we have the nominal and perturbation trajectories {xk} 

an<l {ik}, respectively, resulting from a nominal control input {u*} and an impulse input vl. We can 
write the state history in terms of the impulse input at k = 0 

B(xo)«1 

A(xi)B(x0)vl 

A(x2)A(x1)B(x0)vi (1.91) 

The empirical controllability gramian can be computed from a collection of impulse responses. If 
we apply the unit impulse v1 at k = —j then the response is 

71-j+2,1 

B{x-j)vl 

A{X-j+i)B(X-j)r] 

(1.92) 
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(a) Frame 20 (b) Frame 40 (c) Frame 60 (d) Frame 80 

(e) Frame 20 (f) Frame 40 (g) Frame 60 (h) Frame 80 

Figure 1.17:   Top Row:   Linear dynamic texture of beach sequence.    Bottom Row:   Hybrid affine 
dynamic texture of beach sequence. 

so that 

^2,1 

%1 

A(xo)...A{x-j)B(x-j)v
l ' 

A(xi)...A(x-j)B(x-j)v
1 

A(x2)... A(x-j)B{x-j)vl 

i 

(1.93) 

Suppose we assemble a collection of impulse inputs 

and their corresponding state responses if the impulse inputs were applied at k 

(1.94) 

--J 

*{*-i) = 

A(xo)...A(x-j)B(x-j) 
A(xi)...A(x-i)B(x.i) 
A{xi)...A(x-i)B(x-j) V. (1.95) 

where the J\f(x-j)m^ = r/m^ is the state response at time m with respect to unit impulse input vl 

applied at time k = -j.   Denote the m-th block row of M(x-j) by N{x-j)m.   Assume that V is 
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orthonormal. 

V^x^hAT (*_,)! = B(x0)VVB'(xo) + A(x0)B(x.l)WBt(x^)A/(x0) (1.96) 

+ A(x0)X(a:-1)B(x_2)VV,B/(x_2)^,(a;_i)i4'(xo) + • • • 

= B{xo)B'{x0) + J4(X0)£(*-I)£'(S-IM
/
(*O) (1.97) 

+ A(xo)A(x-l)B(x.2)Bf(x.2)A,(x.1)A
,(xo) + ... 

= ß(x0)5,(x0)=P(x1). (1.98) 

In general the controllability gramian V(xm) can be computed 

P(xm)=    f;   ^(x_J)mAT'(x_j)m. (1.99) 
j = -m+l 

Equation (1.100) can be further averaged as in [43] to include different initial condition matrices and 
different scalings of the initial conditions. The computation of the empirical controllability gramian is 
summarized as follows. 

Lemma 1.2.1 Let the matrix Af(x-.j)m be the state responses at time index m resulting from the 
collection of impulse inputs V applied at time index —j. where the £-th column ofAf{x-j)m corresponds 
with the t-th column ofV.  Then the empirical controllability gramian at xm is 

oo 

7>(xm) =    £   Mix^mU'ix^U. (1.100) 
3 = -m+\ 

■ 
Note that for any j and m, from (1.95), 

jtf(*-iWl = A{xm)A(xm^)... A(x-3)B{x-j) = A{xmW(x-j)m (1.101) 

Corollary 1.2.2 The empirical controllability gramian can be determined by the iteratively through 
the Lyapunov equation 

P(xm+i) = Af(xm)m+1^(xm)m+1 + A(xrn)V(xm)A'{xm) (1.102) 

Proof. We have from (1.101) 

v(xm+l) = J2 WHWI^(NWI 
j=-m 

= A/fam+OnXfrm+Om + A{xm)     £]     A/r(x_J)m+1A
r'(x_j,)m+1 A'{xn) 

j—  mil 

= M{xm)m+\M'(xm)m+i + A{Xm)V{xm)A!{xm) (1.103) 
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Of course, the first term in (1.103) is A/r(xm)m+i.A/7(xm)m+i = £(xm)jE?'(xm), so Corollary 1.2.2 
states that the empirical gramian can be computed by simulating the previous data an additional time 
step and adding the state responses from a single-step simulation. 

Reverse-Time Adjoint System 

As a side note, an alternative formulation of the empirical controllability gramian can be obtained by 
simulating the reverse-time adjoint system 

-yk-i=A'(x£hk, (1.104) 

<pk = B'ixihk, (1.105) 

with a series of non-zero initial conditions, as in the empirical observability gramian. 

Computations for Empirical Gramians 

Computation of the empirical gramians is similar in spirit to [43] and [62] with some key differences. 
First, the formulae in [43] subtract the temporal means from the trajectories, which is not applicable in 
the current setting. Indeed, in the current setting we must track the trajectories of the nominal mean 
states and outputs. Secondly, the Lemma 5 in [43] has the implicit assumption of time-invariance, as 
does [62]. 

Perturbation Trajectories 

Consider the simulation of the system (1.84) with a fixed control input {ük} with a set of N initial 
conditions {XQ}J=\N with average xo. We have, for the nominal trajectory and for each j = 1,..., N 

Xk+i = f(xk) + 0(üfc),   Vk = h(xk) (1.106) 

*i+i = /(*£) + 9(ük), vi = h{4). (1.107) 

Let üfc be a nominal control input and let x~k, yjt be the resulting response of the state and output, 
respectively. We consider the system with either a small perturbation on the initial condition TJQ or 
a small perturbation on the control Vk and the corresponding state and output perturbations rjk and 
Ofc, respectively. Using the first order terms of a Taylor expansion results in 

%+. = ^^% + ^p»* := 4(*Ö% + B(üi)vk, (1.108) 

0* = ^£^% := C(^)%- (1109) 
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Generalized Gramians 

Generalized gramians appear in [9, 34] and are characterized by the Lyapunov inequalities [42] 

V(xk) > B(xk-i)B'(xk-i) + A(xk-.i)V(xk-i)A'(xk_i). (1.110) 

Qfcfc^) > yl,(xfc_1)Q(xfc)>l(xfc_1) + ffiß*+)9fß**l> (1111) 

Existence of solutions appears in [25]. 
The empirical generalized gramians can be computed iteratively through the time indices: forward 

in time for the controllability gramians (see Corollary 1.2.2) and backward in time for the observability 
gramians. 

The idea here is to use a single set of initial conditions and check that the matrices of the resulting 
state responses remains invertible, so it can be used for the computation of the observability gramian 
at the next time step. This way, we can apply the Lyapunov inequality to the empirical gramians to 
establish that they are generalized gramians. 

Periodic Systems 

For periodic system, t ho iterative construction of the empirical gramians musi be modified due to the 
periodic structure of the system matrices. Consider the controllability gramian of a periodic system 
with period N so that V(xk) = V(xk+y). 

Suppose we have computed a nominal empirical gramian V{XQ) and we apply the following iterative 
assignments for k = 0... N — 1. Given V(xk) and ek+i > 0 we compute 

V(xk+l) := B{xk)B'{xk) -r A{xk)V(xk)A'(xk) + eM (1.112) 

> B{xk)B'{xk) + A(xk)V(xk)A'(xk). 113) 

Clearly the iterative assignment satisfies the Lyapunov inequality (1.110) for k = 0... N — 1 but not 
necessarily for k = TV because in general V(xu) ^ V(XQ) . We determine scaling factors mk such that 
V{xk) = mkV(xk) satisfies (1.110) for all k = 0 ... N. 

We first state two useful facts regarding scaling. 

Lemma 1.2.3 If P > 0 and P > TPT* then for any matrix R > 0. there exists a positive constant 
m such that 

mP > mTPT' + R. (1.114) 

Proof. The result follows by dividing (1.114) by m and applying m —♦ oo and P > TPT'. * 

Lemma 1.2.4 If Pi > 0 P2 > 0 and P2 > TPiT' + R with R>0, then if mi > 1 there exists m2 < mx 

such that 
m2P2 > miTPiT' + R. (1.115) 
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Proof. Take m2 = mj to apply P2 > TP{T' + R > TPiT' + ^R to obtain the result. ■ 
Finally, repeated application of (1.112) with e^ = 0 yields 

P(xi) =£(x0)£'(x0) + A(x0)P(x0)A'(x0) + Ci (1.116) 

P(x2) =B(xi)B'(xi) + A(xi)£(xi)A'(x,) 4- e2 

=ß(xi)B'(xi) + i4(xi)Ä(xo)J3/(x0)i4'(xi) + e2 + A(xi)eiA'(xi) 

+ A(xl)A^o)V(xo)A'(x0)A,(x1) 

V(xN) =JB(x7v-i)ß,(xN_i) +....+ [A(XAT-I) • • • A(xi)] B(xo)B'(xo) [A(xN_0 ... A(xi)]' 

4- A(XJV-I)£JV-IA'(XJV-I) + • • • 4- [A(xjv_i)... A(xO] ei [A(xjv-i)... A(xi)]' 

+ [A{xN-i)... A(x0)] V(x0) [A(xN_0 ... A(x0)}' (1.117) 

:=Ä + 7T(x0)r/. (1.118) 

where 

Ä := ^(xjv-OB'fxjv-i) 4- • • • + [A(xN-x). ..A<*i)j £(x0)£'(x0) [Afx/v-O ... A(xi)]' 

4- A(XAT_I)^-IA'(x^-i) 4- • • • 4- [A(XJV-I) • • • A(xi)] ei [A(xiv-i) • • • A(xi)]' (1.119) 

r:=[A(xN_O...A(xo)]. (1.120) 

Proposition 1.2.5 For the N-periodic system, given V(XQ) and {V(xk)}k=\,...,N specified by (1.110), 
there exist positive constants {mk}k=o N such that {V(xk) '■= rnkfi(xk)}k=o N-i satisfy (1.110) for 
all k = 0, N and thus form the matrix blocks of a block-diagonal generalized controllability gramian 
for the periodic system. 

Proof. The proof is by construction. If V{XQ) > V(x^) then take m* = 1, Vfr = 1 V - 1. Suppose 
^(xo) < V{XN). Since the nonlinear system has Lyapunov exponents with magnitudes strictly less 
than unity, V(XQ) > TV(xo)Tf. By Lemma 1.2.3, determine mo such that 

moP(xo) >R + TmoV{xo)T'. (1.121) 

Apply Lemma 1.2.4 to equations (1.116-1.117) to determine {mk}k=i,...,N-i with m,k+i < rrik < TTIQ 

such that (1.110) holds for k = 0,..., N - 1. A final application of (1.121) with V(xN) := m0V(xQ) = 
V{XQ) results in 

V(xN) := m0P{x0)    >    R + Tm0V(x0)T' 

=   £(x7v-i)£'(x;v-i) + A(xN-i)V{xN-i)A'(xN-i), (1.122) 

which is just (1.110) with k = N. m 

Corollary 1.2.6 For the N-periodic system, given Q(XJV) and {Q{xk)}k=o,...,/v-i specified by (1.111), 
there exist positive constants {qk}k=o,...,N such that {Q(xk) := qkQ(xk)}k=i N satisfy (1.111) for all 
k = 0,..., N and thus form the matrix blocks of a block-diagonal generalized observability gramian for 
the periodic system. 
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1.3    Stability Analysis of Systems with Symmetry-Breaking 

1.3.1    Absolute Stability of Coupled Dissipative Parabolic Equations with Wave- 
Speed Mistuning 

Recent work has focussed on the stabilizing properties of symmetry-breaking in oscillator systems. 
We consider the problem of achieving global absolute stability of an unstable equilibrium solution of 
coupled dissipative parabolic equations with non-homogeneous coefficients. In particular, we consider 
the stabilization of a PDE model describing thermo-acoustic instabilities with wave-speed mistuning. 
Sufficient conditions for absolute stability of the infinite-dimensional system are established by the 
feasibility of two finite-dimensional linear matrix inequalities (LMI). Numerical results are presented 
for an example problem. 

We establish conditions for absolute stability of the nominally unstable zero solution of a coupled 
parabolic equation. In particular we are interested in the stabilizing effects of wave-speed mistuning 
on thermo-acoustic systems with skew-symmetric nonlinear coupling. Some analysis of the finite- 
dimensional truncation of this system has appeared in [33, 71, 26] and the results have been demon- 
strated in an actual engine [17]. In most combustion dynamic applications, identifying the exact form 
of the heat-release coupling is difficult, and therefore it is appropriate to study the absolute stability 
properties of such systems, where the skew-symmetric feedback is characterized by a sector bound. 
Recent work has revealed the importance of skew-symmetric coupling in wave-equation systems [7, 8] 
and how mistuning can enhance the stability of such systems. This phenomena is also common in 
suppression of blade flutter instabilities [10, 60, 58, 70]. Additionally, recent work has focussed on 
analysis of heterogeneous distributed systems [24],[40]. 

Through Lyapunov analysis we establish sufficient conditions for absolute stability by the feasi- 
bility of a set of finite-dimensional linear matrix inequalities (LMI) [31, 32]. This paper is organized 
as follows. In section 1.3.1 we describe the model of thermo-acoustic instabilities with wave-speed 
mistuning. This model serves as a motivating example to consider more general systems that have 
off-diagonal linear coupling which is described in section 1.3.1. Stability analysis of the nonlinear 
infinite-dimensional system is presented in section 1.3.1. In section 1.3.1, a finite number of LMI fea- 
sibility conditions are presented that are sufficient for infinite-dimensional absolute stability and the 
relation with finite-dimensional model truncation is presented in section 1.3.1. A numerical example 
is shown in section 1.3.1. 

Thermo-acoustic Model with Mistuning 

We consider the following system that describes rotating thermo-acoustic instabilities as described in 
[33, 26]. with mistuning parameter a2(9) that serves to couple different modes [7, 50]. 

t   =   -"^l + W (-*) 
dp du       d2 

ä = -o-e+imp + Ku + 9{u)' (1124) 

for 9 e [0,2n) with periodic boundary conditions. In (1.123,1.124) u denotes the transverse acoustic 
velocity, p denotes the acoustic pressure, a2{9) denotes the acoustic wave-speed, v and £ represent vis- 
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cous and acoustic damping, respectively, and K and g(-) denote, respectively, the linear and nonlinear 
components of the heat-release coupling (see e.g. [55, 18]). Define the state space 

■[;}• (1.125) 

It is convenient to cast (1.123,1.124) as an evolution equation, so we define the operators 

A = 

so (1.123,1.124) become 

do* —a 2 d 

-m + K   Zm 
\F .*-[;]. c.[i C=[l   0], 

—x = Ax + Bg (Cx). 
at 

(1.126) 

(1.127) 

We now define some finite-dimensional matrices and vectors that will be used in the infinite- 
dimensional stability analysis. We will use {sin, cos} basis functions and denote the k-th. basis function 
as 

1 *m ••= -4= in(k$)        0        cos(kd)        0 sin 

and the fc-th state vector is 

yft [      0        cos(fc0)        0        sin(fc^) J 

X)t:=(0fc,x>= /    4(6)x(0)d6 
Jo 

(1.128) 

(1.129) 

Here the superscripts [■]*, [-]c denote the sin and cos components, respectively.   As in [26, 50] we 
consider the mistuned wave-speed of the form 

-v   aft- a\     0 
-1        -£        K 

a2 (9) = al + a\ cos(2ö) 

For k = 1 the finite-dimensional projection of A is 

Ai := (4>i,A<f>i) = 

K 

For k > 1 define the matrix Ak € R4x4 such that 

Ak := {(pk,A<t>k) = 

(1.130) 

0 
0 

0 0-1/    -al-a\ 
1 -« 

(1.131) 

-Vv kal 0 0 
-k Zi?i K 0 
0 0 -k2v -kal 
K 0 k -fc2d 

(1.132) 

Analysis of the system truncated to a single pair of modes has appeared in [33, 26], where the mistuning 
produces beneficial coupling between the first pair of modes [7]. The mistuning also produces coupling 
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between mode pairs k and k + 2. For k > 1, define 

A£ := (4>k-2,Mk) = 

and for fc > 1 

Afc := (0*+2,.40fc) = 

0 fca2, 0       0 
0 0 0       0 
0 0 0 -fca2, 
0 0 0       0 

0 ka\ 0 0 
0 0 0 0 
0 0 0 -fca2; 
0 0 0 0 

Finally, we write the exogenous input and output matrices for the nonlinear feedback, 

0   0    10 
10   0   0 

[00] 

B = 1   0 
0   0 
0   1 

, c = 

and 

9k ■= 
si 

I9t ]=r-ic< 
J      Jo     yfi L S1 

cos(fc#) 
sin(fc0) 

g(Cx{d)) dS. 

Assumptions and Notations 

(1.133) 

(1.134) 

(1.135) 

(1.136) 

The mistuned t her mo-acoustic model described above serves as a specific example motivating the 
study of, possibly infinite-dimensional, systems with the following structure. 

±i = Aixi 4- Ajx2 4- Bg(y) 

&fc = &k-ixk-i + Akxk 4- A^+1xfc+i 4- Bg{y), 

k = 2,... ,oo 

(1.137) 

X   !— X-x Xo .••]*■ 

where 

Afc = A4-fc,4(1)4-fc2yl(2) 

A + = A(0,+) + ^(1,+) + fc2A(2,+) 

A^A^ + fcA^ + fc^2-) 

(1.138) 

(1.139) 

(1.140) 

(1.141) 



Referring to (1.132), for the thermo-acoustic model we have 

A:= 

0 0 0 0 1 
0 0 & 0 
o 0 0 0 
K 0 0 0 J 

A™ := 

A™ - 

1) "Ü 0     0 
-1 0 0     0 

(.) 0 0   -a§ 
0 0 1      0 

— V 0 0      0 
0 -i 0      0 
o 0 -v     0 
0 D 0     -{ 

Similarly, referring to (1.133,1.134), for the thermo-acoustic model we have A(0,+) 
0)A(2,+)=A(2,-)=0and 

A(i,+) = A(i,-) = 

0 a\   0 0 
0 0    0 0 
0 0    0 -a? 
0    0    0     0 

(1.142) 

(1.143) 

(1.144) 

A<°-->  = 

(1.145) 

The A blocks represent coupling between modes with different indices. As shown in (1.137) the [•]"•" 
superscript indicates the influence of mode k -h 1 on mode k and the [•]" superscript indicates the 
influence of mode k — 1 on mode k. 

The linear part of the system has a banded infinite-dimensional matrix representation 

A:= 

4i A2
+ <) o 

*l A2 A* 
0 A2- A* A4

+ 0 

0 0 

(1.146) 

where all of Ak, AjJ", Aj^ are the same size.  In section 1.3.1 this restriction is partially removed by 
allowing a larger size A\ and accordingly zero-padding the matrices Aj and Aj~. 

The infinite-dimensional matrix representation of a linear operator V : L2(17) x L2(Q) —> L2(Q) x 
L2(Q) consists of elements Pjtk G Rnxn, for j, fc = 1,2, that are defined as follows (see e.g. [1]). If 
V is characterized by the kernel V(6',6). so that 

{Vx){e')= f v(e,,e)x(0)de 
Jn 
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then 

For i,yG L2(Q) we have 

PJM-= I (<t>J(e')v(e',e)<t>k(0) dff de. 

{y,Vx)=Y^yJY/Pj*Xk- 

(1.147) 

(1.148) 

Suppose that Pkik = Pjjt anc* tnat Pj,k — 0 when j ^ k. Hence the infinite-dimensional matrix 
representation of V is block-diagonal, and we refer to the operator V simply as block-diagonal with 
block elements Pk. Then for x, y € L2(Q) we have 

(y,Px) = ^^PfcXfc. (1.149) 

To show absolute stability, we will use a block-diagonal operator V, characterized by the finite- 
dimensional matrices Pk, in a Lyapunov function. It is easy to check that if there exists a constant 
a > 0 such that for all k = 1,2,... the positive definite matrices Pk > al then V is coercive (see [31]). 
This fact will be applied in the forthcoming sections. 

We first consider only the linear system 

Wtx = Ax- 
(1.150) 

Consider the Lyapunov function V(x) = (x,Vx) and assume that V has a block-diagonal infinite- 
dimensional matrix representation 

P:= 

Pi 0 0 

0 P2 0 

0     0     P3 

where Pk = (4>k, P<pk) is the same size as Ak. Taking the time derivative of V(x) yields 

V =(x,VAx) + (Ax,Vx) 

=^Y,xI[PkAk + AlPk}xk 

nT 
k>i 

+£ 
k>2 L Xk 

Mk 
Xk-l 

where 

•V, 
Gk     *k 

(1.151) 

(1.152) 

(1.153) 

(1.154) 
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Gk := A+TPfc_i -f Pk&k-i 

Vk := mk (PkAk + AT
kPk) 

and 

(1.155) 

(1.156) 

(1.157) 

(1.158) 

Mk < 0 (1.159) 

then the linear system (1.150) is asymptotically stable. We will discuss the suitable conditions in more 
detail in the next section. 

It is clear that, under suitable conditions, if for all k = 1,2,..., 

PkAk + AT
kPk < -e 

and 

Infinite-Dimensional Absolute Stability 

we consider the system with nonlinear coupling. We assume that the nonlinear function g(u) 
satisfies the spatially constant sector condition, with /i > 0, 

(g{u),g(u)-fj.u) <0,   Vu G R. (1.160) 

Note that the case of a spatially varying sector bound is treated in [31]. 
Consider the Lyapunov function V(x) = (x,Vx) , where the bounded linear operator V is coercive 

and block diagonal and the matrices Pk are as defined above. Due to the coercivity of V, there exists a 
matrix P > 0 such that Pk > P, V7c. Prom (1.149), (x,Vx) = Ylkx7ePkXk- Taking the time derivative 
of V, where the necessary regularity conditions are outlined in Chapter 6 of [75], results in 

V = (x,VAx) + {Ax,Vx) - 2(x,VBg(Cx)) 

< (x,VAx) + (Ax,Px) 

- 2(x, VBg(Cx)) +   2(\fiCx - g{Cx% g(Cx)) 

Mk 

(1.161) 

(1.162) 

Xk 

Xk-l 

Xk fc>2 

+ \yZtxI[KAk + All\]zk 
k>i 

- 2{x,VBg{Cx)) + 2([fiCx - g(Cx)], g(Cx)) 

-L 
fc>2 L 

Xk-l 

Xk 
Mk 

xk-i 
xk 

+ J2xl1ö[pkAk + Äkpk^xk 

k>l 

+ 2x1 [ßCT ~ PkB) gk - 2gT
kgk. (1.163) 
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The estimate (1.162) is obtained by applying the sector bound (1.160). For notational convenience 
we define 

Vk :**f\ [PkAk + AT
kPk] xk + 2x1 (&T ~ PkBe) gk 

- 29l9k, 

so according to (1.161-1.164). 

k>2 L 

Xfc-1 

Xk 

iT 

Mk 
xk-i 
xk 

+ 5>- 

(1.164) 

(1.165) 

It is now clear that if Mk < -e and Vk < 0 for all k then the system (1.127) will be asymptotically 
stable. The terms Mk appear due to the linear coupling from mistuning and the terms Vk appear due 
to nonlinear coupling. Each term contains a linear stabilizing part that is used to make the each of 
the n terms negative definite. 

/ill analyze the stability of the infinite-dimensional system by estimating Vk for all k = 1 
If there exist constants e > 0 and a > 0 such that for each k, there exists a matrix Pk > ol > 0 such 
that 

Tk := PkAk + AlPk + e 

Lk := ßCT - PkB 

Tk + LkL
T

k < 0 

(1.166) 

(1.167) 

(1.168) 

then (1.164) becomes 

Vk <    e^-xlPkxk - -xlLkL[xk 4- 2xlLkgk - 2glgk 
1 

*J*-»-—«     2' 

< ~ ^2X^PkXk " 2X^LkLkXk + 2X^LkL^Xk 

We can rewrite (1.168) as an LMI [16] 

Pk > (Tl. 
Tk    Lk <0, (1.169) 

which we refer to as the strictly positive real LMI. 

Lemma 1.3.1 Ij for k = 1 the LMI (1.169) is feasible and for k > 2 the LMI (1.159) and (1.169) 
are feasible, then system (1.127) is asymptotically stable. 

Proof. Feasibility of LMI (1.169) for k > 1 implies that Vk < -e\xlxk. For k > 2 feasibility of LMI 
(1.159) implies that Mk < 0. Following (1.165), 

V<--e(x,x). (1.170) 
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Finite Set of LMI Conditions 

For practical analysis, one would like to avoid checking the feasibility of an infinite number of LMI. 
Given the structure of the subsystems, it is possible to establish sufficient conditions so that the 
feasibility of only a finite number, N < oo, of LMI need be checked. The sufficient conditions establish 
that if the LMI are feasible for k = N (for some fixed N) then they will be feasible for all k > N. 

First fix some N > 1 which serves as a truncation index. We are concerned with indices k > N so 
we take k = N + n with n > 1. Now, for any n > 1, following (1.139-1.141) we have 

AN+n = A + {N + n)A^ + (N + n)2A^ 

= A + NAW + N2A{2) + nA^ + (2nN + n2) A™ 

= AN + nA{1) + (2nN + n2)A{2) (1.171) 

Similarly, 

AN+n = *N + ^ + (2*W + n2)A(2'+) (1.172) 
AN+n = A* + iA(1,-) + (2nAT + n2)^2'-). (1.173) 

Suppose further that P/v+n = PN '•— P- The finite set of feasibility conditions will be given for the 
coupling LMI (1.154,1.159) and the strictly positive real LMI (1.169). 

Coupling LMI (1.154,1.159) 

Define 

G(2) 

#(2) 

= A(l.+)Tp+pA(l,-) (1174) 

= A(2.+)Tp+pA(2,-) (1175) 

= mN(PAM+A^Tp) (1.176) 

= mN (PA™ + A™TP) , (1.177) 
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and note that m^+n = m^ = \. Then, 

= A£ P4-PA^_j 

+ n(A(l.+)Tp+pA(l,-)^ 

+ (2nN 4- n2) (A^
T
P 4- PA<2'~>) 

= GN + nG^ + (2nAT 4- n2)G(2) 

^N+n = mN (PAN+n 4- A^+nP) 

- mN (PAN + ^P) 

+ mNn(p^1> + ^1>7p) 

4- mN(2n7V 4- n2) (PA<2> 4- ^2>Tp) 

= #* 4- n#(1) 4- {2nN 4- n2)^ 

and 

#Ar+n-i = *N-i + n*(1) + (2n(N - 1) 4- n2)¥(2) 

= ^N_i + n#(1) - 2n#(2) 4- (2nAT 4- n2)¥2). 

Following (1.154), 

= Mjv 4- n 

4- (2nN 4- n2) 

Gtf+ri        ^7V+n 

It is easy to show the following: 

Lemma 1.3.2 Suppose that 
#(2)     G<2)T 
£(2)      ^(2) <o 

and /or some n > 1, 

1 

2^4-n 

T/ien j > n implies that 

1 
2N4-J  [ 

#0) _ 2^(2)   £(i)T 
+ 

t 

G(2)       ^(2) 

^(2)     Q{2)T 

G(2)       ^(2) 

<0. 

<o. 

(1.178) 

(1.179) 

(1.180) 

(1.181) 

(1.182) 

(1.183) 

(1.184) 

45 



Corollary 1.3.3 Suppose that MN < 0 and thatforn = 1 the LMI (1.182,1.183) hold. Then MN+j < 
0 for all j > 1. 

Strictly Positive Real LMI (1.169) 

From (1.166) and (1.171) it follows that 

TN+n := PAN+n 4- Ajj+nP + e 

= TN+n[PA^+A^Tp) 

+ (2nN + n2) (PA™ 4- A™T
P) 

As in lemma 1.3.2, it is easy to show the following: 

Lemma 1.3.4 Suppose that 

and for some n > 1, 

Then j > n implies that 

PAm+Av)Tp<0 

i_ (pAü) + A«)Tpj + (p^(2) + A(2)Tp^ < 0 
2JV + 

^— [PA^ + ^>rp) 4- (p^2> 4- ^2>rp) < 0. 

(1.185) 

(1.186) 

(1.187) 

(1.188) 

Corollary 1.3.5 Suppose that for index k m N, P > al satisfies (1.169) and (1.186,1.187) with 
n = 1.  Then P is a feasible solution of the LMI (1.169) for all k > N . 

Proof. Because P/v+n = P is constant over n, the only entry in (1.169) that varies with n is the (1,1) 
entry. Feasibility of (1.186,1.187) ensures that IV+j < T/v+n when j > n. m 

Model Truncation 

Restricting the Lyapunov function to be block diagonal can be overly conservative. This restriction 
(in be partially reduced by allowing allowing larger block sizes. In this section we consider a larger 
finite-dimensional model and analyze the feasibility of the LMI. This allows at least the first block 
to be arbitrarily large, but finite. Extending the analysis to apply to larger subsequent blocks is 
straightforward and not explicitly discussed here. 

For some N > 1 define truncated finite-dimensional model AB € R^-I)«*^-!)^ 

AB ■■= 

A* A? 0 0 

0 
A2 

A2- 
A3

+ 

Az A4
+ 0 

0 0 
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and 

BB = diag{B,..., £},   CB = diag{C,..., C) 

XB-[xJ     ...      x£_!   ]T 

9B-= [ 9i     ...    ^N-1 ]T- 

(1.190) 

(1.191) 

(1.192) 

In each of (1.189,1.190) the 0 blocks are assumed to be appropriately sized matrices.   Consider a 
block-diagonal Lyapunov function 

V{x) = (x,Vx) = xT
BPBxB + J2 xlpkxk 

k>N 

where PB G R("-I)"*("-D» and Pk € Rnxn for k > N. Following (1.154-1.156) define 

MB = 

where 

(1.193) 

*B     GT
B 

GB   *N 
(1.194) 

GB := A+TPß + PNAB B 

*B ■= 2 (PBAB + ATBPB) 

(1.195) 

(1.196) 

and 

A+T:= [ 0     ...     0    A+T ] €R*x(N-l)n 

Aß.= [ 0     ...      0     A^_x   ] €Rnx(N-l)n 

and *N = i (PN^N + AT
NPN) by (1.156). 

Taking the time derivative of V(x) and applying the sector bound (1.160) results in 

V<xT
B^[PBAB^Är

BPB]xB 

+ 2xf (fiCl - PBBB) 9B ~ 2gT
B9B 

(1.197) 

(1.198) 

+ XB 

Xjsl 

/                r 

MB 
XB 

XN 

+ 
i :>/V+l 

Xk-l 

Xk 

1T 

Mt 
Xk-\ 
x* 

+ J2x^[PkA"+A^Pk'\x>' 
k>N 

+ 2x1 (f*CT ~ pkB) gk - 2glgk. 

(1.199) 

(1.200) 

(1.201) 

(1.202) 

(1.203) 

(1.204) 
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Define 

TB := PBAB + AT
BPB + e (1.205) 

LB '■= ßCl - PBBB (1.206) 

and consider the LMI analogous to (1.169) 

PB > vl, 
Tß   LB 

L
T

B    -I 
< 0. (1.207) 

Theorem 1.3.6  Given some positive truncation index N > 1. Suppose the following conditions hold: 

1. PB satisfies LMI (1.207) 

2. PN satisfies LMI MD < 0 

3. PN satisfies LMI (1.182,1.183) with n = 1 

4. PN satisfies LMI (1.186,1.187) with n = 1 

Then the system (1.137) is absolutely stable with respect to feedback nonlinearities satisfying (1.160). 

Proof. Take the Lyapunov function 

V(x) = (x,Vx) = xT
BPBxB + 51 *lpN*k- (1-208) 

k>N 

The stated conditions ensure that the terms in (1.199-1.204) are negative: 

1. imphes that (1.199,1-200) < -txT
BxB. 

2. implies that (1.201) < 0. 

3. imphes that (1.202) < 0. 

4. implies that (1.203,1.204) < -tEfc^^fc- 

Together these imply that V < — e\\x\\. Furthermore, since the infinite-dimensional matrix represen- 
tation of V is block diagonal consisting of the two finite-dimensional blocks PB and P/v, the operator 
V is coercive and bounded. ■ 

48 



Numerical Results 

IM this section we present numerical results concerning the solutions of the LMI given in the previous 
ons. We consider the PDE system (1.123,1.124) with wave-speed mistuning and a feedback non- 

linearity satisfying a sector bound. As discussed in [7],[26] it is known that wave-speed mistuning acts 
abilize thermo-acoustic systems with skew-symmetric heat-release coupling. However, in these 

cases the results were established only for finite-dimensional models. The model parameters were 
chosen such that the system without mistuning is unstable and develops a limit-cycle oscillation. A 
wave-speed mistuning parameter along with truncation index N was chosen such that the conditions 
of theorem 1.3.6 were satisfied. The response of the acoustic pressure p{9,t) is shown in figure 1.18. 
Initially the system has no mistuning and develops a limit-cycle due to the skew-symmetric feedback. 
At t = 25 the wave-speed mistuning is applied and the system stabilizes to the uniform steady solution. 

time 

Figure 1.18: wave-speed mistuning initially turned off. Turned on at time= 25. 

1.3.2    Coupling of Stable Subsystems 

In many applications, feedback interconnections between stable dynamical subsystems can lead to 
instability or high sensitivity. Examples of such instabilities include beam vibration [6, 12], flutter 
instabilities [?], and large platoons of vehicles [?, ?. ?. 39, 8]. Often, the dynamic models of these 
systems are characterized by a large number of similar subsystems through neighboring coupling, and 
the coupling of the subsystems may have aperiodic or random patterns [70, 60]. As a result, stability 
analysis of such dynamical systems becomes a challenge. 

Under this contract, we considered coupling of arbitrarily many stable subsystems connected in a 
chain form (see Figure 1.19), and we studied how stability and robustness evolve for varying coupling 
gains between neighboring subsystems. In particular, we focused on linear stable subsystems that have 
a property of "negative imaginary frequency response" [44], which basically means that the subsystem's 
phase shift angle is within the range of [-7r,0] and closely relates to the property of counterclockwise 
input-output dynamics studied in [2], We call them stable negative imaginary (SNI) systems. It has 
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been shown in [44] that stability for a positive feedback interconnection of two SNI subsystems can be 
checked by their DC gain (i.e. the loop gain at zero frequency); see Figure 1.20. 

Figure 1.19: String of n coupled SNI 

The string of n SNI subsystems is simply the coupling of n SNI subsystems via neighboring pos- 
itive feedback interconnection. Following [44, 2], we characterized the stability of the string through 
convergence of a continued fraction that denotes DC gain of sequentially coupled subsystems. The 
derived results avoid explicit computation of eigenvalues or construction of Lyapunov functions, and 
they are readily applicable to analyzing stability and robustness of dynamical systems with different 
coupling patterns. 

Similar analysis was also extended to a ring form (See Figure 1.21). 
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Figure 1.20: Positive feedback interconnection of two subsystems G{s) and $(s). 

Figure 1.21: Ring of n coupled SNI 
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The String Form of Coupling 

Denote by $i(s) the transfer function of the first (z + 1) coupled subsystems (see the transfer functions 
contoured by dashed squares in Figure 1.19). Inductively, we obtain that, 

*i(«) = l-c1riG1(s)G2(s)' 

»«(»)=,     pra'+lSr     M    Vi = 2,3,-..,n-2. 

Thus the string of n coupled stable subsystems is exactly the positive feedback interconnection of 
$n_2(s) and Cn_irn_iGn(s)- Also, denote the DC loop gains of coupled subsystems as follows: 

A^cmdfOlGsfO) 

and, for each i = 2,3, • • • , n - 1, 

CiriGi(0)Gi+i(0) 
l-Ci-in-ifci-aCOJGW) 

CiriGi(0)Gi+i(0) 

1 - Ai_! 

Clearly, each A* is a continued fraction. Thus we have 

Ai = «^(0)0^(0) Vi = 2,3,-,n-L (1.209) 
^-m-iG.-iMG.tO) 

x - 0,-2^-2^-2(0)^-!(0) 
1-1  

The following result extends [44, Theorem 5] to the setting of a series of coupled SNI by relating 
stability of the string to convergence of the continued fractions. 

Theorem 1.3.7 For the string of n coupled SNI, if G\ is a SNI subsystem in a strict sense, 

• Gi(oo) — 0 for alii = 1,2, • • • , n, 

• X{ in (1.209) is less than unity for all i = 1,2,   • • , n — 1, 

then the string is internally stable. 

The next result presents a sufficient condition in term of the subsystems' DC gains and their local 
coupling gains for guaranteeing that each continued fraction AT < 1 in Theorem 1.3.7. 

Theorem 1.3.8  The string of n coupled SNI is internally stable if G\ is a SNI subsystem in a strict 
sense, Gt(oo) = 0 for all i = 1,2, • • • , n, and 

cirlG1(0)G2(0) < i 
CiriGi{0)Gi+l{0) < \    V* = 2,---,n-2, (1.210) 
Cn-^n-xGn-i^GntO) < \  (if U > 2). 
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The Ring Form of Coupling 

It turns out that Theorem 1.3.8 can be extended to a ring form (See Figure 1.21). 

Theorem 1.3.9 The ring of n coupled SNI subsystems is internally stable if G\ is a SNI subsystem 
in a strict sense, Yl7=i °» = n?=i rt.- and ^»(0) ^ 0 and G»(oo) = 0 for alii = 1,2, • • • , n, and 

r cinGmGM(Q)<\ vi = i,...,n-1. n9m 
I ctlrnG1(0)Gn(0)<J, »*»* 

Robust Stability for the String 

The quantity An_i as defined in (1.209) can be regarded as '^robustness'* of stability for the string of 
n coupled stable subsystems. It is interesting to see how varying coupling gains make An_i approach 
its limits (typically less than unity) as the dimension n increases to infinity. For An_i < 1, the string 
remains stable with respect to small variations of neighbor-coupling gains and certain unmodeled 
dynamics that also belongs to the class of SNI. 

In Theorem 1.3.8, consider the case of c,rjG,(0)G^i(0) = -^- for all i' = 1,2, • ■ • , n - 1, where 

/i £ [0,1) is called a mistiming parameter. Solving the equation A = ^—^- • J^J gives A = Mp.  We 

verify that if 0 < A* < ^ then A;+i > A* and lim A» = —-—. Also, we verify that if A, = —^ - e, 
t-»oo 2 

where 0 < e < Ij*, then 

_ 1 - ß       (1 - ix)e   < 1 - ß        o-e 
1+1 2 i + Ai + 2£-     2 l + 2e' 

where o = y^jj and the equality holds for ß = 0. Consequently, we establish by induction that, for 
each i = 1.2.       .n - 1, 

• if p = 0 then 

A,^- 2     1 + 2e(z - 1) 

and hence A* approaches its limit \ in the order of 0(I) as i increases, and 

if 0 < ß < 1 then 

2      i + ^EUi""-1"   2      1+Ä 

and hence At approaches its limit *i* in the order of at most 0{a%) as i increases. 

For the general case of CiriGi(Q)Gi+\(0) < ^- {i = 1,2, • • • ,n - 1), the above convergence 
statements still hold, which is used for estimating the values of the continued fractions and their 
approximants, allows the parameters |**| < 1. 
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Application: Decentralized Control of Vehicle Platoons 

As an application, we considered a platoon of n vehicles modeled as follows 

yi = ut    Vi=1.2.       .n, (1.212) 

where yi and Uj are the position and control input of the ith vehicle, respectively. The control objective 
is to maintain a desired distance L > 0 between any two neighboring vehicles and ensure a desired 
velocity V > 0 for each vehicle, provided that each vehicle has the spacing and velocity information 
relative to its front and back ones. Denote 6i(t) = yi(t) — yt-i(t) + L. 

Two control strategies are provided as follows. The first one is designed with control inputs: 

*(*) = - £i$t(i) -V)- Fifa® - Vt) + Bjfc. 

Mt) = - 6(ftW -y)~ W) + Bi6i+i(t)        Vi = 2. 3. • • • . n - 1. 
nn(t) = - UVn(t) -V)- Fn6n(t), 

where each & is a damping parameter and each Fi (respectively, Bi) is a control gain due to the 
difference between the positions of the ith vehicle and its front (respectively, back) one. This control 
strategy requires all vehicles to have a priori knowledge of the desired velocity V. 

Using the previous stability results, we established that the system (1.212) achieves asymptotic 
tracking with positive real constants &, F<, and Bi (i = 1,2, • • • , n) is internally stable. 

As the second control strategy, we apply the following control inputs: 

ui(t) = - Fi(yi{t) -Vt + L)- miirffi -V) + BxS2(t) + «Bifc(0. 

m(t) = - Fi5i{t) - KFMt) + BiSi+l(t) + KBiSi+i(t)       Vi = 2,3, • • ■ ,n - 1, 

Un(t) = - FnSn(t) - KFjn(t) 

where k > K > 0 are constants and each F| (respectively. Bi) is a control gain due to the spacing and 
velocity differences between the ith vehicle and its front (respectively, back) one. This control strategy 
requires only the leading vehicle has the information of the desired velocity V for the platoon. 

Again, using the previous stability results, we established that the system (1.212) achieves asymp- 
totic tracking with positive real constants k > K, Fi and Bi (i = 1,2,   • • , n). 

These stability results for large vehicle platoon can serve as a foundation for designing various 
coupling patterns and/or gains so as to enhance robust stability or improve system performance. 
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Chapter 2 

Transitions of past AFOSR-sponsored 
research at UTRC 

2.1     Nonlinear Dynamic Texture Modeling 

The concepts developed for nonlinear dynamic texture modeling were applied in an internally funded 
project to calibrate dynamic models from synchronized high-speed video and acoustic press. POC 
Tory Brogan, Pratt & Whitney, 860 557 0547. 
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Chapter 3 

Personnel Supported 

UTRC personnel: Gregory Hagen, Chaohong Cai, George Mathew, Andrzej Banaszuk, Alberto Sper- 
anzon . 
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Chapter 4 

Publications 

4.1    Journal papers 

[jl] C. Cai and G. Hagen, Stability analysis for a string of coupled stable subsystems with nega 
imaginary frequency response. To appear in: IEEE Transactions on Automatic Control, 2010. 

Ij2) G. Hagen, Stochastic Averaging for Identification of Feedback Nonlinearities in Thermo-Acoustic 
Systems. Provisionally accepted: ASME Journal on Dynamic Systems, Measurement, and Control. 
2010. 

4.2    Journal papers in preparation 

[pi] U. Vaidya and G. Hagen, Model Reduction of Nonlinear Systems, Tangent Space Approach. In 
preparation 

[p2] C. Cai and G. Hagen, Stability analysis for a Ring of Coupled Negative Imaginary Systems. 
In preparation 

[p3] G. Hagen and A. Speranzon, Locally Affine Switched Dynamic Texture Models, in prepara- 
tion 

[p4] G. Hagen, On Dynamic Mode Decomposition and Dynamic Texture Models. In preparation 

[p5] G. Hagen and A. Speranzon, Tangent Space Approximation Approach to Compressed Sensing 
and Dictionary Optimization. In preparation 
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4.3    Conference papers 

[cl] J. Cohen, G. Hagen, A. Banaszuk, S. Becz, P. Mehta, "Attenuation Of Gas Turbine Corabustor 
Pressure Oscillations Using Symmetry Breaking", AIAA Aerospace Sciences Meeting. 2011, Orlando, 
FL. 

[c2] G. Hagen, Absolute Stability of a Dissipative Wave Equation with Waves-Speed Mistuning. Pro- 
ceedings of the American Control Conference, Baltimore, MD. 2010. 

[c3] U. Vaidya, G. Hagen, Model reduction of nonlinear systems: Tangent space approach. Pro- 
ceedings of the American Control Conference, Baltimore, MD. 2010. 

[c4] C. Cai, G. Hagen, Coupling of Stable Systems with Counterclockwise Input-output Dynamics. 
Proceedings of the American Control Conference, Baltimore, MD. 2010. 

[c5] C. Cai, G. Hagen, Stability Results for String of Stable Subsystems with Applications to De- 
centralized Control of Large Vehicle Platoons, Proceedings of the 48th IEEE Conference on Decision 
and Control/ 28th Chinese Control Conference, Shanghai, China, 2009 

[c6] M. Arienti, M. C. Soteriou, G. Hagen, M. L. Corn, Analysis of Liquid Jet Atomization Dy- 
namics Using Proper Orthogonal Decomposition, 47th AIAA Aerospace Sciences Meeting Including 
The New Horizons Forum and Aerospace Exposition, 5 - 8,Orlando, Florida, January 2009. 

[c7] M. Arienti , M. Corn, G. S. Hagen, R. K. Madabhushi and M. C. Soteriou, Proper Orthogo- 
nal Decomposition Applied to Liquid Jet Dynamics, ILASS Americas, 21st Annual Conference on 
Liquid Atomization and Spray Systems. Orlando, Florida, May 2008. 

[c8] S. Meyn, G. Hagen, G. Mathew, A. Banaszuk, On Complex Spectra and Metastability of Markov 
Models, Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008 

[c9] G. Hagen, U. Vaidya, An Approach for Nonlinear Model Extraction from Time-Series Data. 
Proceedings of the American Control Conference, Seattle, WA. 2008. 
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